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Topological defects as relics of emergent
continuous symmetry and Higgs
condensation of disorder in ferroelectrics
Shi-Zeng Lin1†, Xueyun Wang2†, Yoshitomo Kamiya1,3, Gia-Wei Chern1, Fei Fan2,4, David Fan2,5,
Brian Casas2,6, Yue Liu2,7, Valery Kiryukhin2, Wojciech H. Zurek1, Cristian D. Batista1

and Sang-Wook Cheong2*

Lars Onsager and Richard Feynman envisaged that the three-dimensional (3D) superfluid-to-normal λ transition in 4He
occurs through the proliferation of vortices. This process should hold for every phase transition in the same universality
class. The role of topological defects in symmetry-breaking phase transitions has become a prime topic in cosmology and
high-temperature superconductivity, even though direct imaging of these defects is challenging. Here we show that the U(1)
continuous symmetry that emerges at the ferroelectric critical point of multiferroic hexagonal manganites leads to a similar
proliferation of vortices. Moreover, the disorder field (vortices) is coupled to an emergent U(1) gauge field, which becomes
massive bymeans of the Higgsmechanismwhen vortices condense (span the whole system) on heating above the ferroelectric
transition temperature. Direct imaging of the vortex network in hexagonal manganites o�ers unique experimental access to
this dual description of the ferroelectric transition, while enabling tests of the Kibble–Zurek mechanism.

Phase transitions are among the most fascinating phenomena
of nature. Understanding their mechanisms is one of the
foremost challenges of modern physics. In a nutshell, the

goal is to understand how the ‘generalized rigidity’ of the ordered
phase emerges through a spontaneous symmetry breaking on
cooling across the critical temperature Tc (ref. 1). An attractive
aspect of these transitions is the universal behaviour that makes
them independent of microscopic details. The universality class is
determined by a few fundamental properties, including symmetry,
range of interactions, dimensionality and number of components
of the order parameter. In addition, the Wilson–Fisher2 paradigm
gave birth to another deep concept known as emergent symmetry.
The basic idea is that the effective action that describes the long-
wavelength fluctuations near the critical point may have more
symmetries than the original microscopic action. This notion
implies that systems such as magnets or ferroelectrics, which
only possess discrete symmetries at a microscopic level, may have
an emergent continuous symmetry at a critical point, as was
demonstrated by Jose, Kadanoff, Kirkpatrick and Nelson in their
seminal work3.

As envisaged by Onsager and Feynman4,5, the restoration of
a continuous U(1) symmetry, such as the superfluid to normal
transition of 4He, can occur by the proliferation of vortices.
The role of these topological defects in symmetry-breaking phase
transitions is now a prime topic in different areas of physics, such
as cosmology6,7 and high-Tc superconductivity8–12, even though

they are difficult to observe13. The potential of having emergent
continuous symmetries in magnets or ferroelectrics with discrete
microscopic symmetries opens the possibility of observing a similar
proliferation of vortices in insulating materials. Although the
emergence of continuous symmetries from discrete variables is
theoretically established, the same is not true at the experimental
level. Among other reasons, it is always challenging to measure
critical exponents with the required resolution to distinguish
between discrete and continuous symmetry breaking. Here we
demonstrate the emergence of a continuous U(1) symmetry at
the ferroelectric transition of the hexagonal manganites RMnO3
(R = Y, Ho, . . . Lu, Sc) by directly measuring the vortices or
disorder field, instead of addressing the order parameter field. An
emergent U(1) symmetry implies that the critical point belongs
to the XY universality class, which is the class of the superfluid
transition of a neutral system such as 4He. Therefore, analogous
with the case of superfluid 4He, the transition must be driven by
a proliferation of vortices spanning the whole system above Tc.
In this dual description, based on the disorder field of topological
vortices instead of the order parameter field14–16 (Box 1), the
phase transition is described as a condensation of a disorder field
which is coupled to a gauge field10,14. On heating across Tc, the
vortex condensation makes the gauge field massive via the Higgs
mechanism. Consequently, the vortex–vortex interaction becomes
screened above Tc, instead of the Biot–Savart interaction that
characterizes the Coulomb phase below Tc. Figure 1a,b shows

1Theoretical Division, T-4 and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. 2Rutgers Centre for Emergent Materials and
Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854, USA. 3iTHES Research Group and
Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan. 4Shaanxi Key Laboratory of Condensed Matter Structures and Properties,
School of Science, Northwestern Polytechnical University, Xi’an 710129, China. 5Montgomery High School, 1016 Route 601, Skillman, New Jersey 08558,
USA. 6Functional Materials Laboratory, Department of Physics, University of South Florida, Tampa, Florida 33613, USA. 7The MOE key Laboratory of
Weak-Light Nonlinear Photonics and TEDA Applied Physics School, Nankai University, Tianjin 300457, China. †These authors contributed equally to
this work. *e-mail: sangc@physics.rutgers.edu

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 1

http://www.nature.com/doifinder/10.1038/nphys3142
mailto:sangc@physics.rutgers.edu
www.nature.com/naturephysics


ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS3142

Duality

Symmetric 
state  

Broken
symmetry  

Higgs 
phase   

Coulomb
phase  

a c

b

Emergent 
U(1)  

Tc

Tc

Spanning 
vortex line 

Vortex loop

Vortex

Anti-vortex

  −α

  −α

  +γ

 −γ

  +β

  +β

Order 
field φ

Disorder 
field   

    +α

    +α

  −γ

    −β

Figure 1 | Dual description of a phase transition with Z2 ×Z3 symmetry. The phase transition can be described in terms of the order field φ (a) or the
disorder field ψ (b). The local order parameter φ takes six values, represented by the even hours in the clock dials in a. They correspond to the six
multiferroic states or domains α+ through γ− distinguished by the polarization direction (+ or−) and the trimerization phase (α, β , γ ), as described in the
text. The multiferroic Z2×Z3 vortices are line defects where the six domains meet with each other, as shown in c. Continuous U(1) symmetry emerges
from Z2×Z3 order parameter at the critical temperature. The disordered phase above Tc can be described as a condensation of the disorder field ψ
signalled by the proliferation of vortex lines spanning the whole system (yellow lines). Only quickly fluctuating closed vortex loops (red lines) are present
for T<Tc. The Higgs and Coulomb phases of the disorder field are described in Box 1.

Box 1 | Duality.

The local order parameter of our problem is a complex field
φj=|φj|eiϕj , that takes six possible values (Z2×Z3) corresponding
to the even times of a clock. By assuming that the local
trimerization and dipole moments develop above Tc, we neglect
the amplitude (|φj|) fluctuations near Tc. The six orientations of φj
are enforced by an effective potential, V (φj)=A cos(6ϕj), which
reflects the anisotropy of the underlying crystal lattice. V (φj) is
dangerously irrelevant at Tc—that is, the coarse-grained action
near the ferroelectric transition becomes identical to the isotropic
φ4 action for the normal to superfluid transition of a neutral
system such as 4He (Fig. 1a):

Hφ=m2
φ
φ2
+uφφ4

+(∇φ)2 (2)

where mφ and uφ are the mass and coefficient of the quartic
term for the field φ. The superfluid to normal transition occurs
by the proliferation of vortex lines at T > Tc. The problem
admits a dual description, in which the proliferation of vortex
lines spanning the whole system arises from a condensation of
a dual or ‘disorder’ field ψ = |ψ |eiθ minimally coupled to an
effective gauge field. Below Tc, the ‘photon’ of this gauge field
is the Goldstone mode of the superfluid field φ. This photon
acquires a finite mass via the Higgs mechanism for T > Tc

(Fig. 1b). Consequently, the Biot–Savart (Coulomb) interaction
between vortex segments for T <Tc becomes screened (Yukawa)
for T>Tc.

The dual description is obtained after a sequence of
transformations. The originalφ4 theory (2) for a neutral superfluid
is first mapped into a loop gas of vortices coupled to a vector
gauge field A generated by the smooth phase fluctuations of the
original field φ. The fluctuating vortex loops are then described by
a disorder |ψ |4 field theory in which the vortex loops correspond
to ‘supercurrents’ of ψ , which remain minimally coupled to A
(refs 14–16):

Hψ=m2
ψ
ψ 2
+uψψ 4

+
1
2t
|(∇− iqeffA)ψ |2+

1
2
(∇×A)2

wheremψ and uψ are the mass and coefficient of the quartic term
for the disorder field ψ . The constants t and qeff are determined
by non-universal parameters, such as the vortex core energy and
the transition temperature14–16. Having direct experimental access
to the vortex field, we can observe the Higgs condensation of
ψ : the emergence of vortex lines that span the whole system
above Tc implies that superfluid currents of the disorder field ψ
connect opposite ends of the sample—that is, the disorder field
has condensed into a ‘superfluid state’ (Fig. 1b).

the same phase diagram from two different viewpoints with the
order and disorder fields. We will see below that the possibility
of freezing vortices in the hexagonal RMnO3 provides a unique
opportunity to experimentally access both the dual theory and the
Higgs condensation of disorder in insulating materials.

The dynamics of symmetry breaking in phase transitions
is another fascinating phenomenon that can be tested in

RMnO3. Its salient features are captured by the Kibble–Zurek
mechanism (KZM), which combines cosmological motivations
with information about the near-critical behaviour. Symmetry
breaking is thought to be responsible for the emergence of the
familiar fundamental interactions from the unified field theory
at Grand Unification Theory temperatures of ∼1015 GeV in the
cooling of the Universe after the Big Bang. As Kibble17 noted,
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Figure 2 | 3D picture of vortex cores: depth profiling of vortex domain patterns. a, Evolution of the Z2×Z3 ferroelectric domains on the polished surface of
a hexagonal-LuMnO3 crystal, which was consecutively thinned down. The depth of each polished surface from the original surface is shown in
micrometres. Layer 1 is an atomic force microscope image on the unpolished, but chemically etched surface. Layers 2–6 are PFM images on the same area
with di�erent depths. The dark and light regions correspond to the domains with opposite electric polarizations. b,c, Enlarged areas exhibiting the evolution
of the vortex and antivortex cores (labelled as blue and red dots, respectively) in the red-boxed and green-boxed regions of a. Vortex–antivortex pairs can
be observed. The structural phases forming such pairs are identified in Fig. 3b. d,e, The obtained depth profiles of the vortex cores for the regions shown in
b,c, respectively. f, Vortex loops and lines spanning the whole system obtained from our Monte Carlo simulations of the 3D clock model of equation (1)
at T>Tc.

relativistic causality limits the size of domains that can coordinate
the choice of broken symmetry in the nascent Universe. This
results in a random selection of local broken symmetry, and
can lead to the creation of topological defects (for example,
monopoles or cosmic strings) that influence the evolution of
the Universe.

Because phase transitions are ubiquitous, their dynamics can
be investigated experimentally. Although relativistic causality is
no longer a useful constraint in the laboratory, cosmological
motivations can be combined with the scaling relations in the

near-critical regime of second-order phase transitions to estimate
the density of topological defects as a function of the quench rate18.
This combination defines the Kibble–Zurek mechanism7,19.

Topological defects are not only clearly visible in RMnO3, but
(in contrast to, for example, superfluids) they are immobilized by
the structure of the material, which solidifies below the critical
point. Consequently, they can be seen and counted at leisure,
long after the transition. Moreover, in contrast to other systems
used as a test bed for KZM (refs 20–27), the quench timescale
τQ can be varied over orders of magnitude. This is important, as
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densities of defects predicted by KZM often scale as τQ to a small
fractional power.

Model
The onset of ferroelectricity in RMnO3 (Tc values of YMnO3,
ErMnO3, TmMnO3, LuMnO3 are ≈1,250, 1,403, 1,523, 1,672K,
respectively) is triggered by a structural instability called trimer-
ization and a subsequent ionic displacement with a net electric
dipole moment. Whereas trimerization breaks the Z3 symmetry of
the hexagonal lattice, the subsequent distortion breaks an additional
Z2 symmetry (sign of the electric polarization along the c axis,
perpendicular to the hexagonal plane)28–33. (Note that Z6 does not
refer to the homotopy group in this context, but to the fact that
these vortices are made of six domains.) The transition then breaks
a Z3×Z2 symmetry group and it is described by an effective p=6
clock model,

H= J
∑
〈j,l〉

cos(ϕj−ϕl)+ J ′
∑
〈j,l〉

cos(ϕj−ϕl) (1)

known to exhibit an emergent U(1) symmetry at the critical point3.
The phase ϕj= nπ/3 takes six possible values when the integer n
runs between 0 and 5. The six minima of this Hamiltonian can be
labelled by the even hours on the clock face, which justifies the name
of themodel. The electric polarizationPj∝cos(3ϕj) is perpendicular
to the triangular layers. The trimerization parameter is described by
a 2DvectorTj∝(cos(2ϕj), sin(2ϕj))with three possible orientations,
which will be denoted by (α, β , γ ). J and J ′ are effective coupling
constants between nearest-neighbour variables j and l on the same
triangular layer and on adjacent layers, respectively. Because the
six-fold anisotropy becomes relevant away from the critical point,
the usual U(1) vortices of the XY model are replaced by the Z6
vortices that are observed in the experiments28–33. The formation of
these six-state vortices, shown in Fig. 1c, originates from the cyclic
arrangement of six interlocked structural antiphase (α, β , γ ) and
ferroelectric (+/−) ground states. According to equation (1), there
are only two low-energy cyclic arrangements, which correspond to
the vortex (α+, β−, γ +, α−, β+, γ −) and the anti-vortex (α+, γ −, β+,
α−, γ +, β−), in agreement with the experimental observations28–33,
see Fig. 1c. Any other cyclic arrangement contains domain walls
with higher energy (|1ϕ|>π/3).

As we explained above, the six-fold anisotropy of the clockmodel
is dangerously irrelevant34,35—that is, the critical point belongs to
the XY universality class but the discreteness becomes relevant away
from Tc. Because the critical region around Tc can be described by
the same Ginzburg–Landau φ4 theory that describes the transition
of a neutral superfluid (Box 1), the ferroelectric order parameter
is also destroyed by proliferation of (Z6) vortices. According to
the dual theory (see Fig. 1 and Box 1), a finite fraction of vortex
lines span the whole system above Tc—that is, the corresponding
vortex cores connect opposite surfaces of the sample. Therefore, it
is natural to conjecture that the six-state vortex domain structures
observed on the surface of RMnO3 correspond to transverse cuts
of these vortex cores. This conjecture is substantiated by the piezo-
response force microscope (PFM) 3D images of vortex cores in
the hexagonal-LuMnO3 crystal (See Supplementary Section 1 for
the method). These images are obtained after a sequence of three
steps: heating a hexagonal LuMnO3 single crystal up to T=1,723K
(>Tc≈1,672K); keeping the temperature constant for 30min; and
cooling the specimen down to room temperature. The emergence
of a vortex domain pattern on the a–b surface of the crystal is
revealed by chemical etching. To obtain a 3D picture of vortex cores
(that is, a depth profiling of vortex domain patterns), the sample is
polished along the c axis and PFM images of the same region are
taken for different depths (Fig. 2a). Enlarged areas exhibiting the
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Figure 3 | Vortex–antivortex pair correlation function. a, Theoretical
vortex–antivortex pair correlation function G(r) for the configuration
obtained on the surface of the system after annealing from Ti=6.0 J to
Tf=0.0 J at a rate1T=0.001 J per MC sweep. b, Measured G(r) for three
di�erent samples with di�erent vortex densities: ErMnO3 (green), YMnO3
(black) and YbMnO3 (red). The distances are scaled by the average defect
separation rav, making the shown quantities dimensionless. Error bars are
from counting statistics and represent one standard deviation. The insets
show parts of the domain patterns obtained in the calculations (a) and
experimentally measured by AFM in YbMnO3 (b). The magnified images
show vortex–antivortex pairs in small regions of these patterns, with the
structural phases labelled.

depth evolution of vortex cores in the red and green boxed regions
are shown in Fig. 2b,c, respectively. The large spatial extension of
vortex cores is evident in the figure. The schematics of the vortex
networks shown in Fig. 2d,e are obtained by depth profiling of the
2D vortex cores.

To simulate this phenomenon, we ran Monte Carlo (MC)
simulations of equation (1) based on a local update Metropolis
algorithm because the microscopic dynamics of RMnO3 is expected
to be local (see Supplementary Section 2 for the simulation details).
The lattice size is L2

× Lz with L= 192 a and Lz = 96 a (a is the
lattice parameter). We used periodic boundary conditions in the
xy plane and open boundary conditions along the z direction. The
critical temperature obtained for J ′= J is Tc≈ 3.03J . The vortices
shown in Fig. 2f were obtained after annealing from an initial
temperature Ti = 6.0J down to Tf = 0 at a rate 1T=0.005J per
MC sweep (MCS). To verify that they reproduce the experimental
observation (Fig. 2a), we compared the distributions of point-
like vortices and anti-vortices on a given layer (see inset of
Fig. 3a). We define the vortex–antivortex pair correlation function
as G(r)=〈ns(0)ns(r)〉, where ns(r)=

∑
α qαδ(r − rα) is a signed

defect density, qα=1(−1) for vortices (antivortices), and rα is the
defect position. The distances are scaled by the average defect
separation rav, makingG(r) dimensionless. Both the overall domain
patterns and the G(r) obtained from the MC simulations (Fig. 3a)
reproduce well the results obtained from applying the same analysis
to the 2D experimental images (Fig. 3b) of three different hexagonal
manganites with different vortex densities: ErMnO3 (0.0046 µm−2),
YbMnO3 (0.16 µm−2) and YMnO3 (0.19 µm−2) (see Supplementary
Section 3 for details).

In the dual description, the disorder field (that is, vortices and
antivortices) condenses on heating across Tc, and this disorder
condensation makes the gauge field massive. This Higgs transition
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Figure 4 | Domain patterns for di�erent initial annealing temperatures Ti (above, near and below Tc). AFM images (a,b) and optical images (c–e) of
LuMnO3 (Tc= 1,672 K), with Ti indicated in each panel. Adjacent areas of di�erent colours correspond to the domains with the opposite polarizations.
Vortices are found only for Ti>Tc, whereas stripe and annular domain patterns are observed for Ti<Tc. This is illustrated by schematic enlargements in f,
showing vortices for Ti= 1,673 K (1 K above Tc), and annular patterns for Ti= 1,671 K (1 K below Tc). The plots in f correspond to the data in the green and
red boxes in b,c.

of the vortex field has direct consequences on the non-equilibrium
symmetry-breaking process that takes place when the temperature
is lowered at a finite rate from an initial temperature Ti close
to Tc. Vortices that span the whole system disappear at a much
slower rate. Consequently, the final state must be very different,
depending on whether the initial temperature Ti is lower or higher
than Tc. If Ti < Tc, all the vortices form as loops of a finite size
(smaller than the system size, with the size distribution set by the
Boltzmann factor), implying that they should shrink and disappear
on cooling. In contrast, if Ti > Tc, a significant (∼70%) fraction
of the vortex network comes as an ‘infinite string’ that spans the
whole system36 and can be expected to survive on cooling. Our
experiments andMC simulations confirm this analysis. Figure 4a,b,
showing atomic force microscope (AFM) images on LuMnO3 with
Tc = 1,672K annealed from 1,698 to 1,673K, demonstrates the
presence of vortices/antivortices, indicating a finite vortex density
for Ti>Tc. When LuMnO3 is annealed from temperatures lower
than Tc, annular domain patterns, high-density wavy stripes, and
low-density straight stripes are found with annealing temperatures
of 1,671K, 1,633K and 1,593K, respectively. The opticalmicroscope
images are shown in Fig. 4c–e. The trend is evident: many vortices

remain in the final state when Ti>Tc. In contrast, the final state for
Ti<Tc consists of annular patterns or straight stripes, and contains
no vortices or antivortices. (Stripes are expected to formowing to the
long-range dipolar interactions, which are present in the real system,
but are not included in ourmodel.) Indeed, our experimental results
and numerical simulations indicate that this discontinuous change
in the dynamics of the vortex field can be used to determine Tc in a
very precise way (±1K/1,672K=±0.06%).

Kibble–Zurek mechanism
In the previous section we have seen that the equilibrium properties
of RMnO3 ferroelectrics are well described by a Z6 clock model
and that the relevant degrees of freedom freeze below a certain
temperature T <Tc. This combination provides an ideal setting for
testing theKZM.Themain difference between the cosmological and
laboratory settings is that now the relaxation time and coherence
length (and speed of the relevant sound rather than the speed of
light) determine the sonic horizon—the linear size ξ̂ of regions that
can break symmetry in step. The basic idea18 is to compare the
relaxation time τ with the timescale of change of the key parameter
(here, relative temperature ε=(T−Tc)/Tc).We assume ε(t)= t/τQ,
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where τQ is the quench time. The relaxation time τ(ε)= τ0/|ε|νz
(where ν and z are spatial and dynamical critical exponents, and τ0
is a timescale set by microphysics) determines the reaction time of
the order parameter. Relaxation characterized by τ(ε) is faster than
|ε/ε̇|= t outside interval t̂=(τ0τ zν

Q )
1/(1+νz) around the transition, so

the system can quasi-adiabatically follow the change imposed by the
quench. This instant is determined by the equation18:

τ(ε(t̂))=|ε/ε̇|= t̂

The system will cease to keep up with the imposed change at time
t̂ before reaching the critical point, while its reflexes are recovered
at time t̂ (that is, when ε̂=(τ0/τQ)1/(1+νz)) after the transition. Thus,
broken symmetry is chosen by fluctuations when their coherence
length is18:

ξ̂=
ξ0

|ε̂|ν
=ξ0(τQ/τ0)

ν/(1+νz)

The choice of broken symmetry is random within fluctuating
domains of this size. Topological defects are then expected to
form with the density of one defect fragment per domain. Thus,
the scaling of ξ̂ with quench rate set by the universality class
of the transition translates into the scaling of the defect density.
This prediction has been verified for the 3D XY model37. Indeed,
even the KZM predictions of the actual density (and not just its
scaling) are close to these observed38. Our experimental results
(Supplementary Section 4) for RMnO3, as well as our simulations
(see Supplementary Section 2 for the simulation details) of H of
equation (1), confirm this prediction and corroborate KZM (Fig. 5).
The obtained exponent of ∼0.59 is very close to the value 2ν/(1+
νz)∼=0.57 that is expected for a 3D XY fixed point: ν=0.67155(27)
(ref. 39) and z ∼= 2 (ref. 40). We emphasize that the 3D XY fixed
point is a consequence of the Z6 symmetry of RMnO3 compounds
(the Z6 anisotropy is dangerously irrelevant at T =Tc (refs 34,35)).
Moreover, we verify the KZM for rapid quenches (where the authors
of ref. 38 observed an unexpected decrease of defect density which
they termed ‘anti-KZM’).

By using the above estimate of one defect fragment per volume
of the domain of that linear size, one can estimate the defect density
as a function of quench rate and of τ0 and ξ0—two dimensionful
constants that characterize the system—and its universality
class given by the spatial and dynamical critical exponents
ν and z .

The essence of the Kibble–Zurek mechanism (KZM) is the
randomness of the choices of broken symmetry in domains of size ξ̂ .
This randomness—in addition to defect density—predicts18 scaling
of the winding numberW subtended by a contour C . The winding
number is the net topological charge:W=n+−n−, the difference of
the numbers n+ and n− of vortices and antivortices insideC . If these
charges were assigned at random, the typical net charge would be
proportional to the square root of their total number, n=n++n−,
inside C , so it would scale as a square root of the area A inside C .
Therefore, for contours of a fixed shape, it would scale as the length
of the contour,W ∝

√
A∝C .

According to theKZM,W is set by thewinding of the phase along
C . In our clockmodel, broken-symmetry phases correspond to even
hours on the clock face.W is then the ‘number of days’ elapsed along
the contour C . As choices of even hours (phases) are random in
ξ̂ -sized domains, the typical net winding number W scales as√
C/ξ̂–it is proportional to the square root of the number of steps.
This scaling with the square root of the circumference can be

tested by finding the net charge of vortices inside C . The results
are shown in Fig. 6. The typical winding number (characterized
either by the average absolute value 〈|W |〉 or the dispersion

√
〈W 2〉)

indeed scales like
√
C/ξ̂ , as long as C>ξ̂ .
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Figure 5 | Dependence of vortex density nv on cooling rate.
a, Experimental vortex density in the final state as a function of the cooling
rate. TmMnO3 (Tc≈ 1,523 K) samples with the cooling rates ranging from 2
to 12,000 K h−1 and ErMnO3 (Tc≈ 1,403 K) samples with the cooling rates
ranging from 0.5 to 300 K h−1 (ref. 37) were measured. The vortex density
as a function of cooling rate is consistent with a power-law dependence
with exponent 0.59 (full lines), which is obtained from our MC simulations
shown in b for a final temperature of 0.92 Tc (black dots), as well as with
the prediction of∼0.57 that follows from the Kibble–Zurek mechanism. In
b, the cooling speed is given in inverse MC sweep (arbitrary units), neq is
the density of the thermally excited vortices subtracted to reveal the KZM
scaling (Supplementary Section 2) and a is the lattice parameter.

This scaling dependence changes when the magnitude of W
falls below 1. Moreover, the scalings of 〈|W |〉 and of the dispersion
√
〈W 2〉 diverge in this regime. This may seem surprising, but it

is actually predicted by the KZM (ref. 41): |W |< 1 occurs when
C<ξ̂ , that is, C normally contains a single defect or none. In this
case 〈|W |〉≈ p++ p−= pDEFECT, while

√
〈W 2〉=

√pDEFECT in terms
of probabilities. Moreover, the probability pDEFECT of finding a defect
insideC is proportional to the areaA subtended byC , accounting for
both the change and divergence of the scalings of 〈|W |〉 and

√
〈W 2〉

seen in Fig. 6a.
Further evidence of the KZM is found in the scaling of 〈|W |〉 and

√
〈W 2〉 with the deformation of the shape of the contour (and the

consequent changes of the area A inside). Figure 6b,c shows that, as
long as the size of the contour is large compared to ξ̂ , the winding
number depends only on its length, and not on the area enclosed by
the loop. However, as expected, the area becomes important when
the number of defects falls below 1 and the scalings of 〈|W |〉 and
√
〈W 2〉 steepen and diverge.
This prediction can be motivated41 by using a simple model

where defects of opposite charge appear in pairs and both their size
and typical separations are given by ξ̂ . This pairing of vortices and
antivortices is an ad hoc model, although it can be motivated by
considering the 3D geometry of vortex lines and their relation to
the vortices that appear as a 2D plane intercepts a 3D sample (see
for example, Fig. 2). Moreover, pairing of the oppositely charged
defects is obviously consistent13,42 with the correlation functions
seen in Fig. 3.

Conclusions
The observation of the Kibble–Zurek mechanism in a non-
equilibrium phase transition with the scaling of defect density
determined by the exponents of the 3D XY model provides further
confirmation of the emergent U(1) at the critical point of the
structural transition. It is then natural to expect a proliferation of
vortices right above the transition. However, because the symmetry
remains discrete at temperatures away from the critical point,
the continuous U(1) vortices that appear in superfluid systems
are replaced by the discrete Z6 vortices observed in hexagonal
RMnO3 at room temperature. This novel realization of a 3D
XY transition has a unique advantage relative to superfluids: the
possibility of freezing vortices in hexagonal RMnO3 provides a
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Figure 6 | Winding numbers for KZM defects. Absolute winding numbers
〈|W|〉 and their dispersions

√
〈W2〉 obtained from the coordinates of

∼4,100 defects in YMnO3 crystal (Supplementary Section 3), as functions
of the average number of defects 〈n〉 inside the contour C. Typical winding
numbers W=n+−n− inside C are predicted by KZM (refs 18,41). Their
scaling follows from the key idea that local random choices of broken
symmetry in domains of size∼ξ̂ determine defect locations. For contours
with circumference C>ξ̂ , which contain many defects (large average
n=n++n−) KZM predicts that 〈|W|〉 and

√
〈W2〉 depend only on C, and

vary as
√

C/ξ̂ , independently of the shape, area A or average 〈n〉∼A inside
C. This may seem surprising, for if defect charges were random, then one
would expect winding number (the mismatch between vortices and
antivortices inside C) to vary as 〈n〉1/2

∼A1/2
∼C. a, The KZM prediction is

confirmed for randomly placed contours of a fixed shape (here squares, like
the green one in Fig. 4b). For a fixed shape C∼〈n〉1/2 and large 〈n〉, typical
winding number scaling |W|∼

√
C/ξ̂ results in 〈|W|〉 and

√
〈W2〉

proportional to 〈n〉1/4. By contrast, when 〈n〉< 1, there is usually at most one
defect inside C, so W can be only 0,+1, or−1, so 〈|W|〉 is proportional to
the probability p of finding a defect. Moreover, p∼A, so now
〈|W|〉∼A∼〈n〉—typical winding numbers depend on the area A inside C.
However, dispersion is proportional to p1/2, so

√
〈W2〉∼C∼〈n〉1/2. Thus,

when 〈n〉< 1, scaling of average 〈|W|〉 and
√
〈W2〉 di�er41. This is also seen

in a. b, 〈|W|〉 contours of the same circumference, but with di�erent shapes
and, hence, areas that di�er by a factor of∼3. As expected, 〈|W|〉 depends
on C1/2 for large 〈n〉 , but on A∼〈n〉∼C2 for fractional 〈n〉. c, Same data
as b redrawn as a function of 〈n〉. In all panels, solid lines show the power
laws predicted for 〈|W|〉 and

√
〈W2〉 by KZM (ref. 41). C is normalized so

that a square of circumference C=4 (A= 1) contains one defect on
average. The KZM prediction18,41 for W, based on randomness of
choice of the broken symmetry in domains of size∼ ξ̂ , is thus verified
in all cases.

unique opportunity to study the disorder field (dual theory) and
measure the experimental consequences of the Higgs mechanism
that arises from its condensation. In particular, geometric properties
of the vortex field of RMnO3 can be related to the critical exponents
of the dual Abelian gauge theory that describes the disorder field
(Box 1). For instance, the critical exponent that controls how the
effective line tension of vortices vanishes when Tc is approached
from below is γ = νψ(2− ηψ), where νψ and ηψ are the critical
exponents of the dual or disorder matter field43. Because the dual
field is described by the same Abelian gauge theory that describes
the order parameter field of a charged superfluid, measuring the
critical behaviour of vortices in RMnO3 would provide information
about the critical exponents of a charged superfluid, such as a
strongly type II superconductor.

The implications of our discussion go far beyond multiferroics.
For example, experiments44,45 with rapid cooling of superconducting
loops reported that the frequency of trapping a single flux
quantum inside scaled with a power which was four times
that predicted for large loops. We have seen such steepening
in 〈|W |〉≈p++p−=pDEFECT, which is indeed in the pDEFECT < 1
regime, set by pDEFECT, and thus proportional to A/ξ̂ 2. Thus, an
explanation (based on the fabrication problems) of the apparent
divergence between what was thought to be KZM predictions and
experiment put forward before turns out to be unnecessary. Instead
of the doubling (presumably based on the expected behaviour46 of
√
〈W 2〉), the scaling of the frequency of trapping a flux quantum

with quench rate quadruples (Fig. 6). Such quadrupling of pDEFECT
and 〈|W |〉, predicted by the KZM (and seen before44,45), is hereby
confirmed experimentally (Fig. 6).

Last but not least, the confirmation of the KZM in a 3D XY
critical point (the same universality class as the λ transition in 4He)
suggests that the failure to detect47 KZM vortices in 4He quench
experiments may be due to their rapid annihilation combined
with the inability to measure their density right after the quench.
Ferroelectrics bypass this problem by immobilizing vortices in
the matrix of the material soon after the quench, preventing
their annihilation.
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